If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2+11t+9=0
a = 2; b = 11; c = +9;
Δ = b2-4ac
Δ = 112-4·2·9
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-7}{2*2}=\frac{-18}{4} =-4+1/2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+7}{2*2}=\frac{-4}{4} =-1 $
| -y+12(y-1/4)=3 | | 15=2v+13 | | 28=1/2(b)(8) | | 21/9=6/x | | -16=2(2n-10) | | 2(6x^+5x)=12 | | z/4–1=3 | | 15=2v+14 | | s/4-1=3 | | 5+3v=-10 | | 4(1-3x)+2x=4-5(2+x) | | 6x+6=42-10x | | 5^(x-3)=9 | | 150*n=231 | | -3m-4=-34 | | 5x+5=-155-7x | | -k/5=-12 | | n÷-5=-30 | | 4n-6=-5 | | 4(m+4)=31-m | | 2x^2-x^2=65 | | 11=3n+2 | | w/9=-9 | | n÷-5=30 | | 7b=3b=28 | | 10(x+2)=5(x+8 | | x/15=x+3 | | -1=7n-4 | | y=15-11 | | 3+4v=-22 | | 15=r-5+6 | | 3(q+4/3=2 |